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Automated channel headwater mapping methods

are reviewed and three methods are used to map

a small watershed in the South Carolina upper

Piedmont based on high-resolution LiDAR data.

First, channels were mapped manually using cre-

nulations on 0.6-m contours generated from

the LiDAR data. Field verifications indicate the

LiDAR-generated contour map is far superior to

the 1:24,000 scale topographic quadrangle and

the resulting network map is treated as the refer-

ence for assessing network simulations. Second,

channel networks were generated using standard

flow accumulation methods with three critical

area thresholds representing drainage areas of

480, 800, and 1600 m2. Third, channel networks

were generated using a slope-area product pro-

portional to stream power (�i,j � Ai,j Si,j). This

multivariate method that includes hill-slope gra-

dients improves the identification of small upland

channels in steep terrain but may also introduce

spurious gully sidewall channels. While all of

the methods are capable of simulating fairly accu-

rate channel networks with an appropriate drain-

age density, errors of omission and commission

are greater with the conventional accumulation

method and have an association with slope.

Los métodos automáticos para cartografiar ca-

nales principales son revisados y tres métodos se

utilizan para cartografiar una pequeña cuenca

en la altura de la Piedmont de Carolina del Sur

basados en datos de alta resolución de LiDAR. En

primer lugar, los canales fueron cartografiados

manualmente utilizando crenulaciones a 0.6-m

en contornos generados a través de los datos de

LiDAR. Investigaciones en el campo indican que

los mapas de contorno generados con LiDAR son

superiores a los cuadrángulos topográficos a es-

cala 1:24,000 y que el mapa de redes resultante es

utilizado como referencia para evaluar las simu-

laciones de red. En segundo lugar, las redes de

canales fueron generadas utilizando métodos de

acumulación de flujo estándar con tres umbrales

de áreas críticas representando áreas de drenaje

de 480,800 y 1600 m2. En tercer lugar, las redes

de canales fueron generadas utilizando un pro-

ducto de área con pendiente proporcional a la

fuerza de la corriente (�i,j � Ai,j Si,j). Este método

de múltiples variable que incluye gradientes de

colina-pendiente mejora la identificación de pe-

queños canales en tierras altas en terreno es-

carpado, pero puede también reflejar falsos bar-

rancos laterales en los canales. Aunque todos los

métodos son capaces de simular de forma certera

las redes de canales con una densidad de drenaje

apropiada, los errores por omisiones son mayores

con el método de acumulación convencional y

tiene una asociación con las pendientes.
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introduction

Small watersheds with first- and second-
order streams dominate the Earth’s land
surface. They comprise up to 75 percent of
the total length of streams in the United
States, yet little is known about where
they exist (Leopold et al. 1964; Heine et
al. 2004; Somerville and Pruitt 2004;
Nadeau and Rains 2007; Fritz et al. 2008).
Existing maps of channel networks, drain-
age divides, and slope configurations are
often inaccurate for small watersheds
owing to coverage by thick vegetative can-
opy and coarse resolutions of elevation
data. Small watersheds in the humid
Southeast tend to be heavily forested, so
first- and second-order stream channels
are largely obscured by vegetative canopy.
Regulatory needs are driving efforts to de-
velop protocols for the field identifica-
tion and mapping of headwater channels
(Gregory et al. 2002; Fritz et al. 2006;
NC Division Water Quality 2009). These
efforts are concentrating on perennial
and intermittent streams, but ephemeral
streams and gullies can be equally impor-
tant in delivering water, sediment, and nu-
trients downstream in times of flood. Field
mapping is generally too expensive for
comprehensive county or state-wide map-
ping projects, but it provides an empirical
basis for calibrating other channel net-
work mapping methods based on remote
sensing data and modeling.

Field mapping protocols distinguish be-
tween perennial and intermittent channels
based on biological, hydrological, and mor-
phological criteria. With the exception of

the main branch channel at the base of the
watershed, which may be intermittent,
most of the channels mapped in this paper
are ephemeral streams in a deep, well-
developed gully system under a mixed for-
est. Cross-sections of these gullies vary
from V-shaped to trapezoidal and range
from 0.6 to 6 m deep (Figure 1). They have
a pronounced geomorphic expression in
the form of banks or sidewalls and impor-
tant hydrologic consequences, as they re-
sult in concentrated flows (as opposed to
sheet or shallow subsurface flows) during
storm events.

Traditional photogrammetric methods
based on aerial photographs are not accu-
rate with regards to the locations of chan-
nels and gullies under forest canopy, so
drainage densities and morphologies of
hillslope features are largely conjectural
on modern maps and models (Heine et al.
2004). The lack of elevation data or maps
that accurately show locations and densi-
ties of channels is a serious limitation to
simulating hydrologic responses to storm
events. Standard 1:24,000 USGS topo-
graphic quadrangles often do not include
blue lines or topographic expressions of
channels. For example, the map for the
small watershed used in this study has lim-
ited evidence of channels that are known
to exist (Figure 2). Accurate modeling of
the production of runoff, sediment, and
nutrients in small watersheds ultimately
requires physically based or rule-based,
spatially distributed models with precise
information about slopes and the location
and density of channels and gullies.

Airborne laser scanning using Light De-
tection and Ranging (LiDAR) provides
high-resolution elevation data. Although
point densities are lower under forest can-
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Figure 1. View up ephemeral headwater channel (gully) in study watershed. Photo February 19, 2005.

opy, the data can be used to accurately map
channel networks in the Southern Pied-
mont (James et al. 2007). Several studies
have concluded that LiDAR derived DEMs
have suitable horizontal and vertical reso-
lutions for mapping channels and surface
water flows (Lane et al. 2003; Casas et al.
2006; James et al. 2007; Jones et al. 2008;
Perroy et al. in press). The growing avail-
ability of high-resolution topographic data
from airborne LiDAR will enable a new
generation of headwater channel mapping
on a nationwide basis. The extent of this
mapping will require automated network
analysis. Previous work in this area docu-
mented the ability of LiDAR data to detect
and map channel networks and gullies un-
der forest canopy in small Southeastern
watersheds of the South Carolina Pied-

mont and evaluated the accuracy of chan-
nel network maps (James et al. 2007). This
paper presents and examines a multivari-
ate stream-power method of automated
channel delineation based on the inclusion
of hillslope gradients.

Standard methods of drainage network
mapping have been developed based on
the use of digital elevation models (DEM).
The resolution and accuracy of the DEM
used is important to the accuracy of the
resulting channel network maps, which
can be substantially different than ground
truth (Walker and Willgoose 1999). Accu-
racies of hydrologic features have been
shown to be sensitive to DEM horizontal
resolutions (Wolock and Price 1994). At
finer DEM grid-cell sizes, geomorphic fea-
tures are more accurately depicted, al-
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Figure 2. Contour maps of watershed near Macedonia Lake, South Carolina. Left map is an excerpt

from USGS 1:24,000 quadrangle. At right is a blow-up of the map with LiDAR 0.6-m contours

overlain. No blue lines are shown in this watershed on the USGS map, yet gullies depicted clearly by

LiDAR contours correspond with deep, field-verified ephemeral or intermittent channels.

though the minimum cell size is con-
strained by the quality of the original sur-
vey data (Zhang and Montgomery 1994).
Accuracies of standard DEMs are also lim-
ited by vertical resolutions; e.g., †7 m in
the early USGS 30 m DEMs (Kenward et
al. 2000). Many geomorphic environ-
ments, such as floodplains, deltas, wet-
lands, and estuaries, are characterized by
low-relief, so the use of standard DEMs for
mapping channels is problematic. Inter-
polation methods used in developing
DEMs may also affect their accuracy
(Aguilar et al. 2005), and these errors
should be considered and reported.

availability of high-

resolution topographic data

The effectiveness of methods for pro-
cessing DEMs will benefit from on-going
efforts to develop high-resolution data
(e.g. LiDAR-derived DEMs) in the USA. It is
widely recognized that a national LiDAR
dataset will benefit many state and federal
agencies such as the Federal Emergency
Management Agency’s (FEMA) flood map
modernization effort (NRC 2007). A recent
National Research Council study recom-
mended that FEMA increase collaboration
with federal, state, and local government
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agencies in the acquisition of LiDAR-derived
topographic data throughout the nation
(NRC 2009). The National LiDAR Mapping
Initiative, also known as the Elevation for
the Nation (EFTN) program, is an effort to
collect accurate, seamless, high-resolution
elevation data for the 50 states through
implementation of medium-altitude, ad-
vanced technology. The American Recovery
and Reinvestment Act of 2009, aka the eco-
nomic stimulus plan, included funding for
the EFTN program to parallel the Imagery
for the Nation (IFTN) program. Advances
in LiDAR technology have reduced costs of
acquisition, increased point densities and
accuracies, and improved post-processing
accuracies, thus increasing the practicality
of a national digital mapping program
based on LiDAR technology. Updating of
the National Elevation Dataset (NED) has
been employing LiDAR data since 2002
and making it available on the internet.
The NED is the elevation layer of the Na-
tional Map, a seamless dataset in the public
domain. NED provides raster elevation
data at three scales ranging from 1 arc sec-
ond (≈30 m) down to 1/9 arc-second (≈3
m) data that are derived from bare earth
LiDAR elevation data. While the NED is
dominated by older data, it is updated on a
two-month cycle to add improved eleva-
tion data as they become available, and the
coverage of 3-m LiDAR-derived data in the
public domain is rapidly growing. As with
the entire National Map, data from the
NED can be accessed through the Seamless
Data Distribution System (SDDS).

The U.S. Geological Survey is the desig-
nated lead Federal agency for collecting
and distributing digital cartographic data.
The USGS incorporates DEM data into the
National Digital Cartographic Data Base
(NDCDB) according to specific standards

(USGS 2000) designed to ensure quality
and compatibility between products. Mod-
ern LiDAR systems are capable of produc-
ing elevation data exceeding the resolu-
tions of the NED 1/9 arc-second (≈3 m)
data, and the spatial resolutions and accu-
racies of LiDAR-derived bare Earth DEMs
continue to improve. Moreover, additional
applications of LiDAR data are promis-
ing and new products can be anticipated.
For example, advances in the analysis of
LiDAR intensity values improve identifica-
tions of soil, vegetation, land-use and
land-cover, and bare Earth from LiDAR im-
agery (Yoon et al. 2008; Cheng and Glenn
2009). This paper utilizes DEMs derived
from standard LiDAR bare-earth products
processed by Ayers and Associates.

headwater stream

mapping concepts

Traditional methods for automated
drainage network mapping and stream or-
dering based on flow-accumulation grids
derived from DEMs have been around for
more than twenty years (Jenson and Dom-
ingue 1988; Lanfear 1990; Martz and
Garbrecht 1993). These methods are accu-
rate for mapping locations of fourth-order
and higher streams in large basins if suit-
able elevation data are available. For small
watersheds in humid regions where forest
canopies obscure the ground surface, how-
ever, conventional topographic data lack
the spatial resolution and accuracy for
mapping first- and second-order streams,
so drainage densities cannot be accu-
rately determined. Although the quality of
LiDAR-derived topography is decreased by
vegetation canopy, some proportion of the
pulses often penetrates through the can-
opy to the ground and is returned to the
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sensor. Thus, LiDAR data have the capa-
bility of providing maps of channel net-
works for small watersheds under for-
est canopy in the southern Piedmont at
unprecedented accuracies (James et al.
2007). These channel networks have much
higher drainage densities than previous
maps, indicating that the delivery of water
and sediment is substantially more effi-
cient than would be expected based on ex-
isting maps of channel networks or from
networks derived from contour crenula-
tions on 1:24,000 maps. Yet, channel net-
work maps resulting from standard flow
accumulation methods alone have errors
of omission and commission indicating
that standard methods can be improved
upon. First, conditions for channel initia-
tion have conventionally been based solely
on flow accumulation; i.e., channels begin
above a specific number of cells contribut-
ing flow from upslope. The critical area
threshold for channel initiation must be
specified. This should be done with field
calibrations, but LiDAR data can greatly
improve constraints on the extent of small
channels to test critical area assumptions
using remote sensing methods. Second,
channel initiation on hillslopes is not sim-
ply a function of runoff (as measured
by drainage area or flow accumulation).
Channel initiation results also from to-
pographic factors including slope gradi-
ents, plan and slope curvature (Tarboton
1991; Heine et al. 2004), and erodibility
factors such as land-use/land-cover, soil
type, and vegetation cover. Thus, locat-
ing headwater channels is a multivariate
problem and univariate mapping solu-
tions, such as the threshold accumulation
method, should be considered as only a
first approximation.

Headwater channel locations are likely

to be strongly influenced by stream power
or power functions of discharge and slope
(Nearing et al. 1997; Istanbulluoglu et al.
2003). Given that stream power is propor-
tional to the product of discharge and
slope (� � QS), and assuming that dis-
charge is approximately proportional to
drainage area (Q � A), then values of the
slope-area product grid should be propor-
tional to stream power (� � AS). One sim-
ple modification of flow accumulation
models, therefore, is to calculate the sim-
ple product of the flow accumulation and
slope grids:

�i,j � Ai,j Si,j (1)

where i and j are grid cell coordinates in
the DEM raster. This method can be used
to map headwater channels by setting a
critical stream power threshold (�C). Sim-
ilarly, some studies of hillslope channel in-
itiation suggest that the critical threshold
for initiation (Acr) can be expressed as a
simple function of the product of accumu-
lation area and a power of slope (Istan-
bulluoglu et al. 2002):

Acr = b ASb (2)

where b and b are empirically derived
coefficients. Finally, the critical area of
stream-head locations has been predicted
based on a slope-power relationship ex-
pressed in terms of the slope tangent (Mont-
gomery and Foufoula-Georgiou 1993;
Heine et al. 2004):

Acr = c (tanu)g (3)

where Acr is the critical area of channel
initiation, u is slope angle (degrees), and c
and g are empirical power-relationship co-
efficients. Coefficients for Equation 3 can
be established empirically using statistical
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regression of log Acr on log tanu (Heine
et al. 2004). The approaches indicated
by Equations 2 and 3 both assume that
channel initiation is governed by a single
accumulation threshold (critical drainage
area) and focus on the identification of
this critical area. A true multivariate
approach, however, acknowledges that
channel initiation is governed by other
factors so that the drainage areas of vari-
ous channel heads may vary. This paper
presents a simple step in this direction by
adding slope to the analysis of drainage
areas.

Table 1. Methods for automated mapping of

headwater channels using stream power.

1. Generate reference channel network using

contour crenulation method on contour

maps created from LiDAR DEM.

2. Generate flow direction and accumulation

grids using DEM created from LiDAR data.

3. Compute area grid (Ai,j) from accumulation

grid as product of accumulation values and

grid-cell area; e.g., 3x3-m grid cell is 9 m2,

so cell with an accumulation of 100 cells has

900 m2 contributing area .

4. Create slope grid (Si,j) from LiDAR DEM.

Convert to percent slope to enable use of

integer values in grid.

5. Compute stream-power (�) grid as product

of area and slope grids: �i,j � Ai,j Si,j.

6. Identify channels on �i,j: Set critical

threshold of stream power (�C) and assign

all �i,j ? �C to 1 and all other cells to 0.

7. Compare simulated channel network

drainage density and topology with

reference network. If too many channels in

simulation, increase �C and repeat step 4. If

too few, decrease �C.

methods

This study is focused on a small water-
shed (7 ha) in the South Carolina upper
Piedmont (Figure 3) that experienced
severe erosion during the early twen-
tieth century owing to land clearance for
agriculture. As with many watersheds in
the region, agriculture declined substan-
tially in the early 20th century, and much
land cover reverted to mixed hardwood-
coniferous forest with a moderately dense
canopy. The LiDAR data used in this study
were collected by Ayers and Associates
with a fixed-wing aircraft in April, 2004 for
the U.S. Forest Service (USFS), Enoree
Ranger District. The April flight optimizes
for leaf-off conditions of the hardwoods,
although coniferous canopy remained
present. Bare-Earth filtering was done by
Ayers and Associates who provided the
USFS with X, Y, Z values in state plane
coordinates, which were converted to
shapefiles and reprojected into UTM coor-
dinates (James et al. 2007). No point cloud
data were available for analysis in this
study. The resulting bare-Earth point den-
sities were 1275 points/ha or an average
point spacing on the order of 3.0 m, al-
though the point density was not uniform.
These point data were used to generate
a TIN, 4x4-m gridded DEM, 4x4-m slope
grid, and a contour map at 0.6 m intervals.

The steps used to simulate and evalu-
ate channel networks are outlined in the
Table 1. A reference channel network map
was manually created using the contour
crenulation method on the detailed con-
tour map with 0.6 m contour intervals
generated from LiDAR DEMs (Figure 4).
Many of the crenulated channels were
field verified, and some channel locations
were manually adjusted based on field
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Figure 3. Physiographic map of southeastern USA showing upper

Piedmont and South Carolina study area in Union County (small

square). Base map from Ireland et al. 1939.

knowledge (James et al. 2007). This chan-
nel network map is treated as the refer-
ence layer for validations of various auto-
mated mapping methods. A slope map
was generated from the LiDAR DEM using
standard nearest neighbour relationships
(Figure 5). In the test watershed, slopes on
the map range from zero to 58 percent.
These gradients are conservative because
these LiDAR data tend to underestimate
gully depths and side slopes under the
mixed forest canopy (James et al. 2007).
The slope map reveals the spatial pattern
of relatively low gradients near divides
and at the base of the depositional fan
near the outlet, with maximum gradients
on gully side slopes. Beyond the gullies,

the slope map indicates a steep zone in
the north end of the watershed and a
low-gradient zone in the central west
area.

Three simulated channel networks
were automatically generated using the
standard flow-accumulation method (Jen-
son and Domingue 1988) with LiDAR-
derived DEMs. The standard method iden-
tifies channels by creating flow-direction
and flow-accumulation grids, comparing
grid-cell values in the accumulation grid to
a critical threshold of drainage area (ac-
cumulation threshold), and assigning all
grid cells with values greater than the
threshold equal to 1 and lesser grid cell
values to 0. The three networks were de-
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Figure 4. Headwater channels mapped using contour crenulations on a shaded relief

base map derived from LiDAR point data. The reference network was manually edited to

remove a few errors based on field knowledge. At ‘1’ two pairs of parallel gullies were

erroneously merged into single channels by all of the simulations. At ‘2’ all simulations

missed the northwest channel and diverted flows eastward into a deep gully. This

corrected network was used as the reference to evaluate simulations.

rived from the flow accumulation grid by
setting critical accumulation thresholds
at 30, 50, and 100 grid cells (critical drain-
age areas of 480, 800, and 1600 m2, re-
spectively). These thresholds were se-
lected after trial runs by identifying a
threshold value that approximated the
drainage density of the reference network
and two other thresholds bracketing that
value. Another set of three channel net-
works was mapped by computing slope-

area products (SA) from the flow ac-
cumulation and slope grid (Equation 1).
The three SA threshold were also se-
lected by comparison of drainage densities
with the reference network. Channel grid
cells were determined by the same thresh-
old method as for the flow accumulation
method using values of SA as thresholds to
generate a range of drainage densities. One
of the three thresholds selected for each
model is close to the reference drainage
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Figure 5. Percent slope grid (Si,j) generated from LiDAR DEM.

Highest gradients (dark zones) are associated with gully side

slopes and with broad areas in north half of watershed.

density which was used as the initial crite-
rion for evaluation. The ultimate success
of each model is based on a qualitative as-
sessment of spatial locations of channels
within the watershed in comparison with
the reference channel network determined
by the contour crenulation method with
field verification.

All channel grid cells were converted to
vectors for mapping and computation of
drainage densities (�channel length /
drainage area). Each network was com-
pared to the reference network gener-
ated by contour crenulation methods. In
both sets of experiments, three arbitrary
threshold values are reported including
one with a similar drainage density to the
reference channel network. Comparisons
were made based on drainage densities,
percent accuracies of channel cell identi-
fications, errors of omission and commis-

sion, and a visual assessment of channel
network topology.

results

By all of the methods employed, chan-
nel networks derived from the LiDAR
DEMs are substantially more dense and
closer to field observations than channel
networks derived from the 1:24,000 map
using blue lines or contour-crenulations.
No blue lines are mapped in the water-
shed on the 1:24,000 quadrangle, so the
blue-line method failed to identify any of
the numerous channels observed in the
field (Table 2). The network generated
by the contour crenulation method us-
ing 1:24,000 quadrangle contours had
a drainage density of only 11.6 m km-2

compared to 34.5 m km-2 for the LiDAR
contour-crenulation map used as the ref-
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erence. Simulated networks derived by
standard flow-accumulation and power
methods had a wide range of drainage
densities and stream magnitudes that var-
ied with the thresholds used. In general,
stream order was far too insensitive to be
used to evaluate differences in networks.
Conversely, stream magnitudes were far
too sensitive to the number of very small
tributaries that may be generated by simu-
lations. Drainage density is considered the
best single metric for tuning the models,
because it provides a quantitative mea-
sure of topologic completeness and hydro-
logical response; i.e., network density is
strongly related to the efficiency of water
and sediment conveyance. Since drainage
area is constant, drainage densities are
proportional to total channel length for
each simulated network. On the basis of
drainage densities, a threshold of 30 cells
provided the best network by the accumu-
lation method and a threshold of SA=750
provided the best network by the stream
power method. Either method could be
fine-tuned to drainage density by itera-
tions of threshold values, so other criteria
are needed to compare the success be-
tween the two methods.

An error analysis was conducted by con-
verting the reference network to rasters
and using that grid to compute errors for
each of the six experiments (Table 3). The
error analysis gives the number of cells that
are accurately classified as channels or not
channels, as well as errors of omission and
commission. The Power 500 and 750 net-
works provided the highest total percent-
age of grid cells correctly classified (‘‘Ac-
curacy’’ on Table 3), but the range of values
between all six experiments was between
85.1 and 87.1 percent. The small differ-
ence reflects that fact that total accuracy

Table 2. Channel network parameters for the

Macedonia watershed.

Drainage area: 70,010 m2.

Stream

Order

Stream

Magnitude

Drainage

Density

(m/km-2)

Contour Crenulation (manual

interpretations):

1:24,000 quad 3 5 11.6

Lidar DEMa 4 31 34.5

Conventional Accumulation Method:

Threshold 30 4 31 35.1

Threshold 50 4 19 28.2

Threshold 100 3 13 19.9

Stream Power Method:

Threshold 250 4 63 46.1

Threshold 500 4 45 32.3

Threshold 750 4 31 26.3

aReference network.

The blue-line method, which uses only streams

depicted on 1:24,000 maps, had zero values in

all four categories; i.e., there were no blue lines

in the study watershed.

is driven by the large number of non-chan-
nel cells that are correctly classified in all
cases. More sensitive assessments are pro-
vided by the percentage of correctly iden-
tified channel cells and errors of omission
and commission. As might be expected,
lower thresholds generate more channels,
so they identify higher percentages of
channel cells, higher errors of commis-
sion, and lower errors of omission (%ch
correct, %Ec and %Eo, respectively on
Table 3). In general, the power networks
identified a larger percentage of channel
cells with lower errors of omission than
the accumulation networks, but they also
committed higher errors of commission.
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Table 3. Errors of omission and commission from grid-cell counts using LiDAR contour crenulations

network as reference.

Error Classesa

Method Channel

Not

channel Ch H Eo Ec

Total

Correct

Total

Error

Accuracy

(%)b

%Ch

correctc %Ecc %Eoc

Crenul. 778 3600 4378

Accumulation

30 547 3831 355 3408 423 192 3763 615 86.0 45.6 24.7 54.4

50 440 3938 301 3461 477 139 3762 616 85.9 38.7 17.9 61.3

100 309 4069 247 3538 531 62 3785 593 86.5 31.7 8.0 68.3

Power

250 724 3654 425 3301 353 299 3726 652 85.1 54.6 38.4 45.4

500 514 3864 361 3447 417 153 3808 570 87.0 46.4 19.7 53.6

750 416 3962 315 3499 463 101 3814 564 87.1 40.5 13.0 59.5

aSuccess/Error Classes

Ch = correctly classified as channel

H = correctly classified as not channel (hill slope)

Eo = incorrectly classified as not channel (error of omission)

Ec = incorrectly classified as a channel (error of commission)
bPercent accuracy = number correct / total number cells
c%Ch correct, %Ec, and %Eo are percentages of total channel cells correct, errors of commission,

and errors of omission, respectively, all calculated as proportions to 778, the total number of

channel cells in the reference network.

Visual inspection of the networks is es-
sential to an accurate assessment of the
spatial pattern determined by a given
method. Cell-by-cell error evaluations
often miss important aspects of a quality
assessment that may be visually obvious;
e.g., distributary channels or channels
crossing sub-divides within the watershed.
While the best estimate of drainage den-
sity was obtained with an accumulation
threshold of 480 m2 (30 cells), several
channels in that network extend too far
up into the low-gradient convex slopes
near the western divide (Figure 6). In this
respect, the network generated using a crit-
ical area threshold of 800 m2 (50 cells) in
the conventional critical threshold method

provided a topologic structure more in
keeping with the reference network. The
quantitative error data (Table 3), however,
indicate that the difference between the
two simulated networks is primarily a
trade-off between errors of omission and
commission. The decrease in errors of
commission in shifting from a threshold of
30 to a threshold of 50 was compensated
for by an approximately equal increase in
errors of omission. Clearly, factors other
than drainage area must explain some of
the channels in the control group that were
omitted in the simulations.

When hillslope gradient is added to
network simulations through computation
of stream powers the resulting channel
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Figure 6. Channel networks derived by the

conventional flow accumulation method with

various critical area thresholds (Acr). Upper left:

Acr = 30 provides drainage density closest to

reference network but many locations of channels

are incorrect. Upper right: Acr = 50

underestimates drainage density. Lower right: Acr

= 100 greatly underestimates drainage density.

maps are improved (Figure 7). The power
network generated with a threshold of 500
provides a fairly good topological resem-
blance to the reference network. Total ac-
curacy is high (87 percent), and errors of
omission and commission are moderately
low. Most importantly, the high gradient
zone in the northern watershed has more
channels than the accumulation model,
and the low-gradient zone in the west has
fewer channels. Both of these features are
in accordance with the reference network
(Figure 8).

discussion

The power method appears to have the
potential to improve on the conventional
accumulation method, especially in areas
of variable gradient where the presence or
absence of channels may be influenced by
shear stresses of flows. This concept and
the simple application demonstrated here
needs to be tested on more headwater
stream and gully systems in a variety of
environments to see if it is robust. In all
cases of automated channel network map-
ping, field calibration to determine thresh-
olds and verify model predictions is essen-
tial to reliable mapping. Further
improvements to simulation methods,
such as filtering out short first-order
streams, are being explored.

Errors of omission and commission re-
main substantial in all of the models pro-
duced (Table 3), suggesting that a higher
order method of hillslope gradients or
multivariate approaches could be benefi-
cial. All of the grid-simulated networks re-
ported here rely on the same flow-direc-
tion and flow-accumulation grids, and a
few topological errors embedded in the
flow direction model were promulgated



Figure 7. Stream-power networks based on

Equation 1 (�i,j = Ai,j Si,j). Solid lines show

the contour crenulation reference network;

dashed lines are simulated networks.

Figure 8. Three stream networks for two

selected subbasins. Top: west side of

watershed showing low gradient zone where

accumulation method extends too far but

power method is similar to reference

network. Bottom: steep north side of

watershed where network generated by

accumulation method fails to capture most

of the streams in the reference network. The

power method produced better results despite

errors of omission and commission.
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through all subsequent analysis (Figure 4).
For example, this watershed has closely-
spaced parallel channels in places that the
4-m LiDAR DEM was not capable of dis-
criminating (James et al. 2007). While the
LiDAR DEMs provide a substantial im-
provement over earlier topographic data
sets, errors in the flow direction model rep-
resent pure error in the analysis that should
be corrected in an early phase of the anal-
ysis through field mapping and hydroburn-
ing techniques. In addition to errors inher-
ent to the DEMs, some variability in the
reference channel networks is likely to be
the result of multivariate complexity that
cannot be completely explained by simple
functions of drainage area or slope. Factors
such as soil type, vegetation, or incipient
conditions (e.g., rills forming in plowed
furrows 50 years ago) may explain some
channels that won’t appear on simulations.

conclusion

Topographic information provided by
LiDAR bare Earth data produce elevation
models that are substantial improvements
over standard DEMs. Contour maps de-
rived from these DEMs allow delineation of
headwater channel and gully networks by
conventional contour crenulation methods
that are good first approximations of chan-
nel networks observed in the field. Net-
work maps derived from the LiDAR DEMs
were generally of good quality. Using the
crenulation map to calibrate thresholds
for accumulation and power thresholds is
helpful but field verification of maps is es-
sential. Standard accumulation methods
produced reasonable results, but inclusion
of the slope-area product appears to pro-
vide additional channel predictive ca-

pabilities. In areas of highly variable hill-
slope gradients, the power method may
provide a simple means of discriminating
between slopes with equal accumulation
areas that are channelized and those that
have no channels.
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